Basic Concepts and Principles of Epidemiology

D. Anvind Shama
Associate Professor

- Epidemiology is the basic science of Preventive and Social Medicine.
- Epidemiology is scientific discipline of public health to study diseases in the community to acquire knowledge for health care of the society. (prevention, control and treatment).
- Epidemiological principles and methods are applied in -

Clinical research,

- Disease prevention,
- Health promotion,

Health protection and

- Health services research.
- The results of epidemiological studies are also used by other scientists, including health economists, he
policy analysts, and health services managers.

MODERN EPIDEMIOLOGY

- Infectious disease Epidemiology.
- Chronic disease Epidemiology.
- Clinical Epidemiology.
- Genetic Epidemiology.
- Occupational Epidemiology.
- Cancer Epidemiology.
- Neuro-Epidemilogy.

As defined by John M. Last (1988)

Box 1.2. Deflnillion of epldemlology	
The word "epidemilogy" is devived foom the Greek words. epri" upon", demos" "people" and d.gogs "study". This braad defintion of epidemilogy can be further elborated as follows:	
Term	Explanation
Stuy	includes: surveillance, observation, hypothesis testing, analytic research and experiments.
Distribuion	
Deteminants	include factors that infiuence heath: biological, chemical, physical, social, cultural, economic, genetcic and behavioural.
Healt-realees states and events	refer to: diseases, causes of death, behaviours such as use of tobacco positive health states, reactions to preventive regimes and provision and use of health services.
Spectied populiaions	

Ultimate Aim of Epidemiology
- 1. To eliminate or reduce the health problems of
community.
- 2. To promote the health and well-being of society as
a whole.

Aims \& Objectives of Epidemiology

1. To describe the distribution and magnitude of health and disease problems in human population.
2. To identify etiological factors (risk factors) in the pathogenesis of disease.
3. To provide data essential to the planning, implementation and evaluation of services for the prevention, control and treatment of disease and setting priorities among those services.

Distribution

- Distribution of disease occurs in a PATTERN.
- PATTERN- Time, Place, Person .
- PATTERN - Hypothesis for Causative/Risk factor Etiological Hypothesis.
- Descriptive Epidemiology.

Determinants

- Identifying the causes and risk factors for diseases
- Testing the Hypothesis - (Biostatistics)
- Analytical Epidemiology

Scope of Epidemiology

- 1. Causation of the disease.
- 2. Natural history of the disease
- 3. Health status of the population.
- 4. Evaluation of Interventions.

1. Causation of the disease.

- Most of diseases are caused by interaction between genetic and environmental factors. (Diabetes)
- Personal behaviors affect this interplay.
- Epidemiology is used to study their influence and the effects of preventive interventions through health promotion.

2. Natural history of the disease

Epidemiology is also concerned with the course and outcome (natural history) of diseases in individuals and groups.
2. Natural history of the disease Figure 1.4. Matural history

3. Health status of the population

- Epidemiology is often used to describe the health status of population
- Knowledge of the disease burden in populations is essential for health authorities.

To use limited resources to the best possible effect by identifying priority health programmes for prevention and care.
3. Health status of the population

4. Evaluation of Interventions

- To evaluate the effectiveness and efficiency of health services.
- This means determining things such as -

Impact of Contraceptive use on Population Control
the efficiency of sanitation measures to control
diarrheal diseases and
the impact of reducing lead additives in petrol.

- Applying epidemiological principles and methods to problems encountered in the practice of medicine has led to the development of

"Clinical Epidemiology"

Epidemiology and public health

- Public health, refers to collective actions to improve population health.
- Epidemiology, one of the tools for improving public health, is used in several ways.

Epidemiology \& Clinical Medicine

- 1. In Clinical Medicine the unit of study is a 'case', but in the Epidemiology the unit of study is 'defined population' or 'population at risk.
- Physician is concerned with the disease in the individual patient, whereas Epidemiologist is concern with the disease pattern in entire population.
- So, the Epidemiology is concern with the both Sick \& Healthy.

Applications of epidemiology in public health

1. Preventing disease and promoting health.
2. Community health assessment (Community Diagnosis) and priority setting.
3. Improving diagnosis, treatment and prognosis of clinical diseases.
4. Evaluating health interventions and programmes.

Epidemiological approach

- 1. Asking questions.
- 2. Making Comparisons

1. Asking questions

Related to Health Events	Related to Health Action
1. What is the event? (Problem)	1. What can be done to reduce the problem?
2. What is magnitude?	2. How can be prevented in future?
3. Where did happen? 4. When did happen?	3. What action should be taken by community?
5. Who are affected?	4. What resources required?
6. Why did it happen?	5. How activities to be organized?
	6. What difficulties may arise?
emiology is "a means of lear ing answers that lead to f	ning by asking questions and her questions."

-	These questions can be referred to as:
1.	Case definition
2.	Person
3.	Place
4.	Time
5.	Causes

2.Making Comparisons

- To find out the differences in the AGENT, HOST and ENVIRONMENT conditions between two groups.
- Weighs, balances and contrasts give clues to ETIOLOGICAL HYPOTHESIS.

Basic Measurements in Epidemiology

Defining health and disease

Definition -

"health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity"

(WHO in 1948)

- This definition - criticized because of the difficulty in defining and measuring well-being - remains an ideal.
- The World Health Assembly resolved in 1977 that all people should attain a level of health permitting hem to lead socially and economically productive lives by the year 2000. (Health for All by 2000)
- Practical definitions of health and disease are needed in epidemiology, which concentrates on aspects of health that are easily measurable and amenable to improvement.
- Definitions of health states used by epidemiologists tend to be simple, for example,
"disease present" or "disease absent"
- There is often no clear distinction between normal and abnormal.
- Specially, for normally distributed continuous variables that may be associated with several diseases.
- Examples-
\checkmark Cut of point for Blood Pressure- HTN
\checkmark Cut of point of Hemoglobin- Anaemia.
\checkmark Normal Range of Blood Cholesterol.

BLOOD CHolsstreol (mg\%)	frrequency
125-135	5
${ }^{135-145}$	22
${ }^{145-155}$	25
${ }^{155-165}$	130
165 -175	140
175-185	260
${ }^{185}$-195	274
195.205	282
205.215	268
${ }^{215-225}$	270
225.235	135
$235-245$	135
245-255	24
255.265	24
265.275	8
TOTAL	2000

MEASURING DISEASE FREQUENCY

Incidence and Prevalence

- These are fundamentally different ways of measuring disease frequency.
- The incidence of disease represents the rate of occurrence of new cases arising in a given period in a specified population, while
- prevalence is the number of existing cases (old+ new) in a defined population at a given point in time.

Incidence

- "Number of new cases occurring in defined population during specified period of time"
- Incidence $=$ Number of new cases during given period / Population at risk x 1000

Prevalence

- Prevalence is total no of existing cases (old + new) in a defined population at a particular point in time or specified period.
- Prevalence $=$ Total no of cases at given point of time /Estimated population at time x 100

Relation between Incidence \& Prevalence

Prevalence $=$ Incidence \times Mean duration of $d / s e$.

$$
P \quad=\quad \mathbf{I} \quad \mathrm{x}
$$

Example - if,
I = 10 cases per 1000 per year.
$D=5$ years.
$\mathrm{P}=10 \times 5$
50 cases per 1000 population.

- 1. Point Prevalence
Prevalence for given point of time.
- 2. Period Prevalence
Prevalence for specified period.

Table 2.2. Differences between incidence and prevalence		
	Incidence	Prevalence
Numerator	Number of new cases of disease during a specified period of time	Number of existing cases of disease at a given point of time
Penominator	Population at risk	Population atrisk
focus	Whether the event is anew case Time of onset of the disease	Presence or absence of a disease Time period is arbitrary, rather a "snapshot" in time
${ }^{\text {ses }}$	Expresses the risk of becoming ill The main measure of acute diseases or conditions, but also	Estimaies the probability of the population being ill at the period of time being studied.
	used for chronic diseases More useful for studies of causation	Useful in the study of the burden of chronic diseases and implication for health sevvices
Note: I fincident cases are not resolved, but continue over time, then they become existing (prevalent) cases. In this sense, prevalence $=$ incidence \times duration.		

TOOLS OF MEASUREMENTS

Numerator and Denominator
- $\frac{\text { Numerator - Number of events in a population }}{\text { during specified time. }}$
- Denominator -
1. Total population
- Mid-year population
- Population at risk
2. Total events

Tools of Measurements

Basic tools are -

- 1. Rate
- 2. Ratio
-3. Proportion
- Used for expression of disease magnitude.

Ratio

- Ratio measures the relationship of size of two random quantities.
- Numerator is not component of denominator and

BOTH numerator \& denominator are unrelated.

- Ratio $=x / y$
- Example-

Proportion

- Proportion is ratio which indicates the relation in a magnitude of a part of whole.
- The Numerator is always part of Denominator and multiplier is 100 .
- always expressed in percentage (\%).

SCOPE OF MEASUREMENTS IN EPDIEMIOLOGY

Measurements in Epidemiology

1. Measurement of mortality.
2. Measurement of morbidity.
3. Measurement of disability.
4. Measurement of natality.
5. Measurement of presence or absence of attributes.
6. Measurement of health care need
7. Measurement of environmental \& other risk factors.
8. Measurement of demographic variables.

Evidence pyramid in research

- Meta-analysis (Highest clinical relavence: Gold standard)
- Systemic review
- Cohort study
- Case control study
- Case series
- Ideas, editorial opinions
- Animal research
- In vitro (Test-tube) lowest clinical relevance)

Epidemiological Studies

1. Observational Studies

- Observational studies allow nature to take its course.
- The investigator measures but does not intervene.

2. Experimental Studies

Active involvement to change disease determinants.
such as an exposure or a behaviour - or the progress of a disease through
are similar in design to experiments in other sciences

Observational Studies
1. Descriptive Study - is often the first step in an epidemiological investigation. - is limited to a description of the occurrence of a disease in a population. - Formulation of Hypothesis.
2. Analytical Study - analyze relationships between health status and other variables. - Testing of Hypothesis.

Types of Epidemiologic Study Designs		
Type of study	Alternative name	Unit of study
Observational studies		
Descriptive studies Analytical studies		
Ecological	Corelational	Populations
Cross-setional	Prevalence	Indinduals
Case control	Casereference	Individuals
Cohort	Follow wp	Individuals
Experimental studies	Intervention studies	
Randomized controlled trials	Clinical trias	Individuals
Clister randomized		Groups
Field trials Communiy trials		
Community trials	Community intervention	Healthy people Communities

Descriptive Epidemiologic Studies

- A simple description of the health status of a community.
- Based on routinely available data or data obtained in special surveys.
- is often the first step in an epidemiological investigation.

Procedure in Descriptive Studies

1. Defining population to be studied.
2. Defining disease under study.
. Describing disease by
Describ
Time
Place
Person
3. Measurement of disease.
4. Measurement of disease.
5. Comparing with known indices.
6. Formulation of etiological hypothesis.

1. Defining population to be studied.

- It is a 'Population study' not of an individual.
- Defining population by total number and composition (age, sex, occupation etc.)
- Defined population- can 'whole population' or 'a
representative sample'.

2. Defining disease under study.

- Operation Definition - of disease is essential for measuring the disease in defined population.
- It provides 'denominator’ for calculating rates and frequency.

3. Describing disease

- Describing the disease frequency and distribution in terms of Time, Place and Person.

4. Measurement of disease.

- To obtain the clear picture of 'disease load' in the population.
- In terms of Mortality, Morbidity and Disability.
- Morbidity has two aspects -
- Incidence - Longitudinal Studies
- Prevalence - Cross-sectional studies

5. Comparing with known indices.

- Basic epidemiological approach

1. making comparisons
2. Asking questions.

- Making comparison with known indices in population
- By making comparisons - clues about
disease etiology and
high risk population.

```
6. Formulation of etiological hypothesis.
- A hypothesis is supposition arrived at observation or reflection.
. Population.
Specific cause - risk factors/exposures.
Outcome - disease/disability
. Dose-response relationship
5. Time response relationship
Hypothesis should be formulated in parameers:
``` parameters.


\section*{Example- Descriptive study}

\begin{tabular}{|ll|}
\hline & \multicolumn{1}{|c|}{ Uses of Descriptive Epidemiology } \\
1. & Provide data of magnitude of problem- disease load. \\
2. & Provide clues for etiology. \\
\begin{tabular}{l}
3. \\
Provide background data for planning, organizing and \\
evaluating the preventive and curative services.
\end{tabular} \\
4. & Contributes to research. \\
\hline
\end{tabular}

\section*{Classification of research methods}

\section*{Case-control studies}
```

It is first approach to testing caucal hypothesis

- especially for rare disease.
- Three features-

1. Both exposure and outcome (disease) has occurred.
2. Study proceeds backwards from effect to cause.
3. It uses a control group to support or refuse a inference.
```
Introduction
- Synonyms - retrospective study
- A study that compares two groups of people: those
with the disease or condition under study (cases) and a
very similar group of people who do not have the
disease or condition (controls).
- Essential elements
- Both exposure and disease have occurred
- Proceeds from effect to cause
- Uses a comparison 'control' group
inwest tradembemerese
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{2 by 2 table} \\
\hline & Diseased - Cases & Non-diseased - Controls & Total \\
\hline Exposed & A & B & A+B \\
\hline Non-exposed & C & D & C+D \\
\hline Total & A+C & B+D & A \(+\mathrm{B}+\mathrm{C}+\mathrm{D}\) \\
\hline \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}

\begin{tabular}{l}
\(\quad\) Basic steps in Case-control study \\
1. Research Question \\
2. Selection of cases and controls. \\
3. Matching. \\
4. Measurement of exposure. \\
5. Analysis and interpretation. \\
\hline
\end{tabular}

\section*{Research question}
- Begin with broad and ambitious question
- Later, narrow and more precise
- Considerations of time, cost
- Eg.
1. Does tobacco cause cancer?
2. Does smoking tobacco cause bronchogenic CA?
3. Do persons having broncho. CA have h/o greater exposure to tobacco smoking as compared to persons w/o the disease?

\section*{1. Selection of cases and controls}
- CASES
- Case definition - (Diagnostic criteria and Eligibility criteria.)
- Source of Cases - (Hospital or General population)
- CONTROLS

Free from the disease under study.
Similar to the cases in all other aspects.
- Source-

Hospital, Relative, Neighbourhood, General population

Source of Control
\begin{tabular}{|c|c|c|}
\hline Source & Advantage & Disadvantage \\
\hline Hospital based & Easily identified. Available for interview. More willing to cooperate. Tend to give complete and accurate information (\(\downarrow\) recall bias). & \begin{tabular}{l}
Not typical of general population. Possess more risk factors for disease. Some diseases may share risk factors with disease under study.
Berkesonian bias \\
Berkesonian bias
\end{tabular} \\
\hline Population based & Most representative of the general population. Generally healthy. & \begin{tabular}{l}
Time, money, energy \\
Opportunity of exposure may not be same as that of cases. (location, occup.)
\end{tabular} \\
\hline Neighbourhood controls/ Telephone hange random dialing & \begin{tabular}{l}
Controls and cases similar in residence. \\
Easier than sampling the population.
\end{tabular} & \begin{tabular}{l}
Non cooperation. \\
Not representative of general population
\end{tabular} \\
\hline Best friend control/ Sibling control & Accessible, Cooperative Similar to cases in most aspects. & Overmathing. \\
\hline
\end{tabular}

Selection process - 2
- Cases
- In practice; we use all eligible cases within a defined time period
- From disease registry or hospital
- We are implicitly sampling from a subset of total population of cases
- Controls
- Sampling is most pertinent here because in rare diseases, the no. of controls greatly exceed no. of cases

\section*{Selection of cases - 1}
- Representativeness
- Ideally, cases sh. be a random sample of all cases of interest in the source population (e.g. from vital inta, registry data)
from a medical care facility from a
clinics)
- Method of Selection
- Selection may be from incident or prevalent cases
- Incident cases are those derived from ongoing
```

- Prevalent cases are derived from a cross-sectional
survey cases are derived from a cross-sectional

```

\section*{Selection of cases - 2}
- Incident cases are more optimal
- These should be all newly diagnosed cases over a given period of time in a defined population. (However we are excluding patients who died before diagnosis)
- Prevalent cases do not include patients with a short course of disease (patients who recovere early and those who died will not be included)
- Can be partly overcome by including deceased cases as well as those alive

\section*{Selection of controls - 1}
- The four principals of Wacholder
1. The study base
2. De-confounding
3. Comparable accuracy
4. Efficiency

\section*{Selection of controls - 2}
- Should the controls be similar to the cases in all respects other than having the disease? i.e. comparable
- Should the controls be representative of all non-diseased people in the population from which the cases are selected? i.e. representative

\section*{Selection of controls - 3}
- Representativeness
- Sh. be representative of the general population in terms of probability of exposure to the risk
- Comparabil
- Sh. also have had the same opportunity to be
- Sh. also have had the san
exposed as the cases have
- Not that both cases and controls are equally exposed; but only that they have had the same opportunity for exposure.

\section*{Selection of controls - 5}
- The study base is composed of a population at risk of exposure over a period
- Cases emerge within a study base. Controls should also emerge from the same study base, except that they are not cases.
- Eg. If cases are selected exclusively from hospitalized patients, controls must also be selected from hospitalized patients.

\section*{Selection of controls - 6}
- Comparability is more important than representativeness in the selection of controls
- The control should resemble the case in all respects except for the presence of disease

\section*{Selection of controls - 7}
- Number of controls
- Large study; equal numbers
- Small study; multiple controls
- Use of multiple controls
- Controls of same type
- Multiple controls of different types
- Hospital and neighborhood controls
- e.g. case - children with brain tumor, control

\section*{2. Matching.}
- Matching is process by we selecting controls in a manner that they are similar to cases in all variables.
- Matching is essential for comparability and for elimination of confounding bias.

\begin{tabular}{|l|}
\hline \\
- A Confounding factor is a factor which associated with \\
both exposure and disease and unequally distributed in \\
study and control groups. \\
- Exm-1. Alcohol in esophageal cancer, smoking is confounding factor. \\
2. Age for steroid contraceptive are causative in Breast cancer. \\
- Matching procedure - \\
- Group matching (Strata matching). \\
- Pair matching. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Biases } \\
- Bias due to confounding \\
- Memory or recall bias \\
- Selection bias \\
- Berkesonian bias \\
- Interviewer bias \\
\\
\\
\hline
\end{tabular}
3. Measurement of exposure.
- Information of exposure of risk factor should be obtain in same manner for both cases and controls.
both exposure and disease and unequally distributed in study and control groups.
- Memory

Information obtain by-
- Questionnaire.

Interviews.
Hospital records.
Hospial records.
Employment records.
Group matching (Strata matching).
Pair matching.

\section*{2. Odds Ratio (Cross-product Ratio \\ - It is estimation of risk of disease associated with exposure. \\ - It measures strength of association of risk factor and outcome(disease). \\ Odds Ratio = ad \(/ \mathbf{b c}\)}

Estimation of disease risk associated with exposure among cases \& controls.
- Odds Ratio \(=33 \times 27 / 55 \times 2=8.1\)

Exposure rates
a. Cases \(=a /(a+c)=33 / 35=94.2 \%\).
b. Controls \(=\mathrm{b} /(\mathrm{b}+\mathrm{d})=55 / 82=67 \%\),
(p value is \(\mathrm{p}<0.001\))
- Smokers have risk of developing lung cancer 8.1 times higher than non-smoker.

\begin{tabular}{|l|}
\hline - For the odds ratio to be a good approximation, the cases and \\
contros must be representative of the general population with \\
respect to exposure. \\
- However, because the incidence of disease is unknown, the \\
relative risk can not be calculated.
\end{tabular}

\begin{tabular}{|c|}
\hline Other Examples \\
- Adenocarcinoma of vagina and DES \\
- OCP and thrombosis \\
\\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{4}{|c|}{ Pros \& Cons } \\
\hline Advantages & Disadvantages \\
\hline Easy to carry out & Subject to several biases \\
\hline Rapid results & Selection of controls difficult \\
\hline Inexpensive & Incidence can't be measured \\
\hline Suitable for rare diseases & Association doesn't mean causation \\
\hline No risk to subjects & Not practical for rare exposure \\
\hline \begin{tabular}{l}
Minimal attrition \\
Multiple exposures can be \\
studied
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline Types of Cohort Studies \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
1. Prospective cohort studies. (Current cohort study) \\
1. Dolls \& Hills-Smoking with lung carcinoma \\
2. Framingham heart study \\
3. OCP \& health by Royal College of General Practitioner \\
2. Retrospective cohort studies. (Historical cohort study) \\
1. Birth cohort 1969 to 1975 with Electronic foetal monitoring \\
2. Lung carcinoma in Uranium miners \\
3. Angiosarcoma of liver with PVC \\
3. Combination of retrospective and prospective cohort studies. \\
1. Radiation therapy for Anchylosing Spondylitis with Aplastic anaemia or Leukemias
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Elements of Cohort studies}
1. Selection of study subjects.
2. Obtaining data on exposure.
3. Selection of comparison group.
4. Follow-up.
5. Analysis.

\section*{1. Selection of study subjects.}
- General population
- Framingham heart study
- Special group (Doctors, Teachers, Lawyers, former military).
- Exposure group-Cohort should be selected from the group with special exposure under study
- Radiologist for X -ray exposure
- Radiologist for X

\section*{2. Obtaining data on exposure.}
a. Cohort members- questionnaire, interview
b. Review of record
c. Medical Examination or tests.
d. Environmental surveys.

Categorized according to exposure -
1. Whether exposed or not exposed to special causal factor
2. Degree of exposure.

\section*{4. Follow-up.}
- Regular follow-up of all participants.
- Measurement of variable depends upon outcome.
- Procedure-
. Periodical medical examination.
Review of hospital records.
. Routine surveillance and death records.
Mailed questionnaire and phone calls, periodic home visits

\section*{5. Analysis.}
- Data are analyzed in terms of -
a. Incidence rates.
- Among exposed and non-exposed
b. Estimation of risk.
- Relative Risk.
- Attributable Risk

\section*{3. Selection of comparison group.}

\section*{1. Internal comparison.}

Subjects are categorized in yroup according to degree of exposure \&
mortality and morbidity compared.
- Franingham Heart Study
2. External comparison.

When degree of exposure not know
Control group with similar in other variable.
Radiologists with Ophthalmologists
3. Comparison with general population.
Comparison with the general population as exposed group.

Comparison with the enereal popluation as exposed group. Expected values \& Observed values
on annual basis
- Incidence of disease in exposed
- Incidence of disease in non-exposed \(=\)
- Relative risk (RR)

\(\qquad\)

\section*{Measures of association}
- Relative risk (RR) \(=I_{(\mathrm{e})} / I_{(\mathrm{ue})}\)
- Risk difference \(=I_{(\mathrm{e})}{ }^{-1} \mathbf{I}_{\text {(ue) }}\)
- Attributable risk \(=\left[I_{(\mathrm{e})}-I_{(\mathrm{uee}}\right] / I_{\text {e) }}\)
- Population attributable risk
\(=\left[I_{\text {top }}\right)^{\left.-I_{\text {(ue) }}\right] / I_{\text {(top }}} \mathrm{X}_{100}\)

\section*{Relative Risk (Risk ratio)}
- Relative risk is the ratio of the incidence of disease among exposed and incidence among non-exposed.

\section*{RR of Lung cancer \(=10 / 1=10\)}
- It is direct measure of strength of the association between suspected cause and effect
- It does not necessary implies the causal relationship.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Fraction, proportion \& percentage} \\
\hline Fraction & Proportion & Percentage \\
\hline 1/3 & 0.33 & 33\% \\
\hline 2/3 & 0.66 & 66\% \\
\hline 3/4 & 0.75 & 75\% \\
\hline 1/4 & 0.25 & 25\% \\
\hline 2/4 & 0.50 & 50\% \\
\hline 2/5 & 0.40 & 40\% \\
\hline & & \\
\hline
\end{tabular}

- The relative and attributable risks of

Cardiovascular complications in women taking oral contraceptives:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Cardiovasculur risk 100,000
patients years} & & \\
\hline & \(30 \cdot 39\) & 40.44 \\
\hline Relative risk & 2.8 & 2.8 \\
\hline Attributable isk & 3.5 & 20.0 \\
\hline
\end{tabular}
- Risk assessment, smokers v/s non-smokers
\begin{tabular}{|l|l|l|l|l|}
\hline Cause of Death & \begin{tabular}{l}
Death \\
rate/1000
\end{tabular} & & & \\
\hline & Smokers & Non-smokers & RR & AR(\%) \\
\hline Lung Cancer & 0.90 & 0.07 & 12.86 & 92.2 \\
\hline CHD & 4.87 & 4.22 & 1.15 & 13.3 \\
\hline
\end{tabular}

\section*{Advantages}
- Incidence and RR can be calculated
- One exposure and multiple outcomes
- Dose response ratios
- Recall bias reduced

\section*{Disadvantages}
- Unsuitable for rare outcomes
- Long duration
- Administrative problems
- Loss to follow up
- Selection of representative groups
- Diagnostic criteria may change over time
- Expensive
- People may alter their behaviour
- Ethical problems
\begin{tabular}{|c|}
\hline \\
EXPERIMENTAL EPIDEMIOLOGY \\
\\
\\
\end{tabular}
- Interventional or experimental study involves attempting to change a variable in subjects under study.

This could mean the elimination of a dieary factor thought to cause allergy, or testing a new treatment on a selected group of patiens.
- The effects of an intervention are measured by comparing the outcome in the experimental group with that in a control group

\section*{Objectives of Experimental Studies}
1. To provide 'scientific proof' for etiology of disease and risk factor which may allow modification of occurrence of disease.
2. To provide a method of measurement for effectiveness and efficiency of therapeutic / preventive measure for disease.

To provide method to measurement for the efficiency health services for prevention, control and treatment of disease.

\section*{Types of Experimental Studies}
1. Randomized Control Trials.
2. Field Trials \& Community Trials.

\section*{Randomized Control Trials (RCT)}

RCT is a planned experiment designed to asses the efficacy of an intervention in human beings by comparing the effect of intervention in a study group to a control group.
- The allocation of subjects to study or control is determined purely by chance (randomization).
- For new programme or new therapy RCT is best method of evaluation.

\section*{Basic Steps in RCT}

Drawing-up a protocol.
2. Selecting reference and experimental population.
. Randomization.
4. Manipulation or Intervention.
5. Follow-up
6. Assessment of outcome.

\section*{The Protocol}
- Study conducted under strict protocol.

Reference and Experimental population
- Reference population (Target Population)
- Reference population \(\begin{gathered}\text { (Target Population) }\end{gathered}\)
- Is the population in which the results of the study is applicable. Areference popula
occupation etc.
- aim, objectives, criteria for selection of study and control group, sample size, intervention applied, standardization and schedule and responsibilities.
- Experimental Population (Study Population)

It is derived from the target population.
- Three criteria-
1. they must be representative of RP
- Pilot study -
- some time small preliminary study is conducted to find out
2. qualified for the study
feasibility or operational efficiency.
3. ready to give informed consents.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Randomization } \\
- It is statistical procecture to allocate participants in groups - \\
Study group and Control group. \\
- Randomization gives equal chance to participants to be \\
allocated in Study or Control group. \\
- Randomization is an attempt to eliminate 'bias' and allow \\
'comparability'. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline - Randomization eliminates 'Selection Bias'. \\
- Matching is for only those variable which are known. \\
- Randomization is best done by the table of random numbers. \\
- In Analytical study there is no randomization, we already \\
study the difference of risk factor. So only option is Matching. \\
\hline
\end{tabular}

Manipulation or Intervention
- Manipulation by application of therapy or reduction or Manipulation by application of therapy or reduction or
withdrawal of suspected causal factor in Study and control \(\frac{\text { withdr }}{\text { group. }}\)
- This manipulation creates independent variable whose effect is measured in final outcome.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Follow-up } \\
- Follow-up of both study and control group in \\
standard manner in definite time period. \\
- Duration of trial depends on the changes expected in \\
duration since study started. \\
- Some loss of subjects due to migration, death is k/as \\
Attrition. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Assessment } \\
- Final step is assessment of outcome in terms of positive and \\
negative results. \\
- The incidence of positive and negative results are compared in \\
both group- Study group and Control group. \\
- Results are tested for statistical significance. (p value) \\
\hline
\end{tabular}

\section*{Potential errors in epidemiological studies (Bias)}
- Bias may arise from the errors of assessment of outcome due
- Bias may arise fro
- Three sources-
1. Bias on part of subject.
2. Observer bias.
3. Bias in evaluation.
\begin{tabular}{l}
\(\quad\) Blinding \\
- Blinding is procedure to eliminate bias. \\
- Thee types - \\
1. Single blind trial. \\
Participant not aware of study. \\
2. Double blind trial. \\
Examiner and participant both not aware. \\
3. Triple blind trial. \\
Participant, examiner and person analyzing the data not aware of the study. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Field trials } \\
- Field trials, in contrast to clinical trials, involve people who \\
are healthy but presumed to be at risk. \\
- Data collection takes place "in the field"" usually among \\
non-institutionalized people in the general population. \\
- Since the subjects are disease-free and the purpose is to \\
prevent diseases.
\end{tabular}

\section*{Community Trials}
- In this form of experiment, the treatment groups are communities rather than individuals.
- This is particularly appropriate for diseases that are influenced by social conditions, and for which prevention efforts target group behaviour
- Example -
- IDD and Iron def Anaemia.
- Fortification of food.
Ethical issues in Epidemiological Studies
1. Informed consent.
2. Confidentiality.
3. Respect for human rights.
4. Scientific integrity.
ASSOCIATIONAND CAUSATION
- Descriptive studies-
- Idenification of disease problem in community.
- Relating agent, host and environmental factor.
- Analytical and Experimental studies
- Tests the hypothesis derived from the descriptive studies.
- Accept or reject the association between the suspected cause and disease.
- Epidemiologists are now proceed from demonstration of statistical
association to causal association.
association to causal association.
```

- Association is defined as - the concurrence of two variables
more often than would be expected by chance.
- So association does necessarily imply a causal relationship.
- Correlation - is strength of association between two variable.
- Correlation coefficients ranges from -1 to +1 .
- $+1=$ perfect linear positive relationship.
- $-1=$ perfect linear negative relationship.
Causation implies association and correlation but correlation and association do not necessarily imply causation.

THANK YOU

## 1. Spurious association.

Exp- IMR in home and institutional deliveries.
2. Indirect association.
3. Direct or Causal association.
a. One to one causal association.
b. Multi-factorial causation.
$\qquad$

```
Exm- CHD-multiple factor
```

3. Direct or Causal association

Exm- CHD- multiple factors.

THANKYOU

