Basic Concepts and Principles of Epidemiology

Dr. Arvind Sharma Associate Professor

- Epidemiology is the **basic science** of Preventive and Social Medicine.
- Epidemiology is scientific discipline of public health to study diseases in the community to acquire knowledge for health care of the society. (prevention, control and treatment).
- · Epidemiological principles and methods are applied in -- Clinical research,

.

- Disease prevention.
- Health promotion, - Health protection and
- Health services research.
- The results of epidemiological studies are also used by other scientists, including health economists, health policy analysts, and health services managers.

MODERN EPIDEMIOLOGY

- Infectious disease Epidemiology.
- Chronic disease Epidemiology.
- Clinical Epidemiology.
- Genetic Epidemiology.
- Occupational Epidemiology.
- Cancer Epidemiology.
- Neuro-Epidemilogy.

Definition

"The study of the <u>distribution</u> and <u>determinants</u> of <u>health-related</u> states or <u>events</u> in specified populations, and the application of this study to the prevention and control of health problems".

As defined by John M. Last (1988)

Box 1.2. Definition of epidemiology	1
The word "epidemiology" is derived from This broad definition of epidemiolog	m the Greek words: epri ^{**} upon", <i>demos</i> "people" and <i>logos</i> "study". y can be further elaborated as follows:
Term	Explanation
Study	includes: surveillance, observation, hypothesis testing, analytic research and experiments.
Distribution	refers to analysis of: times, persons, places and classes of people affected.
Determinants	include factors that influence health: biological, chemical, physical, social, cultural, economic, genetic and behavioural.
Health-related states and events	refer to: diseases, causes of death, behaviours such as use of tobacco, positive health states, reactions to preventive regimes and provision and use of health services.
Specified populations	include those with identifiable characteristics, such as occupational groups.
Application to prevention and control	the aims of public health-to promote, protect, and restore health.

Ultimate Aim of Epidemiology

- · 1. To eliminate or reduce the health problems of community.
- · 2. To promote the health and well-being of society as a whole.

Aims & Objectives of Epidemiology

- 1. To describe the distribution and magnitude of health and disease problems in human population.
- To identify <u>etiological factors (risk factors)</u> in the pathogenesis of disease.
- 3. To provide data essential to the planning,
- implementation and evaluation of services for the prevention, control and treatment of disease and setting priorities among those services.

(Acc. to International Epidemiological Association)

Distribution

- Distribution of disease occurs in a PATTERN. · PATTERN- Time, Place, Person .
- PATTERN Hypothesis for Causative/Risk factor -Etiological Hypothesis.
- · Descriptive Epidemiology.

Determinants

- Identifying the causes and risk factors for diseases.
- Testing the Hypothesis (Biostatistics)
- Analytical Epidemiology

Scope of Epidemiology

- 1. Causation of the disease.
- 2. Natural history of the disease.
- 3. Health status of the population.
- 4. Evaluation of Interventions.

1. Causation of the disease.

.

- Most of diseases are caused by interaction between <u>genetic and environmental factors</u>. (Diabetes)
- <u>Personal behaviors</u> affect this interplay.
- Epidemiology is used to study their influence and the effects of <u>preventive interventions</u> through health promotion.

2. Natural history of the disease

Epidemiology is also concerned with the <u>course</u> <u>and outcome</u> (natural history) of diseases in individuals and groups.

3. Health status of the population

- Epidemiology is often used to describe the <u>health</u> status of population.
- Knowledge of the <u>disease burden in populations</u> is essential for <u>health authorities</u>.
- To use <u>limited resources</u> to the best possible effect by <u>identifying priority health programmes</u> for prevention and care.

3. Health status of the population

4. Evaluation of Interventions

- To evaluate the <u>effectiveness and efficiency</u> of health services.
- · This means determining things such as -
- Impact of Contraceptive use on Population Control.
 the efficiency of sanitation measures to control diarrheal diseases and
- the impact of reducing lead additives in petrol.

 Applying <u>epidemiological principles and</u> <u>methods</u> to problems encountered in the <u>practice of medicine</u> has led to the development of-

"Clinical Epidemiology"

Applications of epidemiology in public health

.

- 1. Preventing disease and promoting health.
- 2. Community health assessment (Community <u>Diagnosis)</u> and priority setting.
- Improving <u>diagnosis</u>, treatment and prognosis of clinical diseases.
- 4. Evaluating health interventions and programmes.

Epidemiology and public health

- Public health, refers to *collective actions* to improve population health.
- Epidemiology, <u>one of the tools</u> for improving public health, is used in several ways.

Epidemiology & Clinical Medicine

- In <u>Clinical Medicine</u> the <u>unit of study</u> is a 'case', but in the <u>Epidemiology</u> the unit of study is '<u>defined</u> <u>population' or 'population at risk'</u>.
- **Physician** is concerned with the <u>disease in the</u> <u>individual patient</u>, whereas **Epidemiologist** is concern with the <u>disease pattern in entire population</u>.
- So, the Epidemiology is concern with the both <u>Sick &</u> <u>Healthy.</u>
- 2. In Clinical Medicine, the physician seeks to <u>diagnosis</u> for which he derives <u>prognosis</u> and prescribes <u>specific treatment</u>.
- The Epidemiologist is confronted with the relevant data derived from the particular <u>epidemiological</u> <u>study. (Community Diagnosis)</u>
- He seek to identify the source of infection, mode of transmission, and an etiological factor to determine the future trends, prevention and control measure.

- 3. In Clinical Medicine patient comes to the Doctor.
- Epidemiologist, goes to the community to find out the <u>disease pattern</u> and suspected <u>causal factors</u> in the question.

Epidemiological approach

- 1. Asking questions.
- 2. Making Comparisons.

1. Asking questions

-	clated to ficarti Events	IX.	elated to Health Actio
1.	What is the event? (Problem)	1.	What can be done to reduce the problem?
2.	What is magnitude?	2.	How can be prevented in future?
3.	Where did happen?	3.	What action should be taken
4.	When did happen?		by community?
5.	Who are affected?	4.	What resources required?
6.	Why did it happen?	5.	How activities to be organized?
		6.	What difficulties may arise?
en	niology is <i>"a means of le</i>	arnin	g by asking questions

l.	Case definition	- (what)
2.	Person	- (who)
3.	Place	- (where)
4.	Time	- (when)
	Causes	- (why)

ſ

2. Making Comparisons

.

- To find out the <u>differences</u> in the AGENT, HOST and ENVIRONMENT conditions between two groups.
- <u>Weighs, balances and contrasts</u> give clues to ETIOLOGICAL HYPOTHESIS.

Basic Measurements in Epidemiology

Defining health and disease

Definition -

"health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity"

(WHO in 1948)

- · This definition criticized because of the difficulty in defining and measuring <u>well-being</u> – remains an ideal.
- · The World Health Assembly resolved in 1977 that all people should attain a <u>level of health permitting</u> them to lead socially and economically productive <u>lives by the year 2000</u>. (Health for All by 2000)

• Practical definitions of health and disease are needed in **epidemiology**, which concentrates on aspects of health that are <u>easily measurable and</u> amenable to improvement.

- Definitions of health states used by epidemiologists tend to be simple, for example, "disease present" or "disease absent"
- There is often no clear distinction between normal and abnormal.
- Specially, for *normally distributed* <u>continuous</u> <u>variables</u> that may be associated with several diseases.
- Examples-
- ✓ Cut of point for Blood Pressure- HTN.
- ✓ Cut of point of Blood ressare
 ✓ Cut of point of Hemoglobin- Ar
 ✓ Normal Range of Blood Cholesterol. Anaemia.

BLOOD CHOLESTEROL (mg%)	FREQUENCY
125 - 135	5
135-145	22
145-155	25
155-165	130
165-175	140
175-185	260
185-195	274
195-205	282
205-215	268
215-225	270
225-235	135
235-245	135
245-255	24
255-265	24
265-275	8
10711	

MEASURING DISEASE FREQUENCY

Incidence and Prevalence

.

- These are fundamentally different ways of <u>measuring disease frequency.</u>
- The <u>incidence</u> of disease represents the rate of occurrence of <u>new cases</u> arising in a given period in a specified population, while
- <u>prevalence</u> is the number of <u>existing cases</u> (old+ new) in a defined population at a given point in time.

Incidence

- "Number of <u>new cases</u> occurring in <u>defined</u> <u>population</u> during <u>specified period of time</u>"
- Incidence = Number of new cases during given period / Population at risk x 1000

Prevalence

- Prevalence is total no of existing cases (old + new) in a <u>defined population</u> at a particular point in time or specified period.
- **Prevalence** = Total no of cases at given point of time / Estimated population at time x 100

Relatio	on betw	een I	ncideı	1ce & I	Prevalen	<u>ce</u>
Prevalen	ce = Inci	idence	x Me	an dura	ation of d	/se.
Р	=	I.	x	D		
Example –	if, I= 10 c D = 5 y P = 10 50 ca	ases p ears. <mark>x 5</mark> ases p	oer 100 er 100)0 per y 0 popula	ear. ation.	

٠	1. Point Prevalence

Prevalence for given point of time.

• 2. Period Prevalence

Prevalence for specified period.

Cases of C	old infections in class 4J : Cla	ass size = 20
January	February	March
	· ·	
	•	
What is the period prev	alence during February?	6/20=30.0%
What is the point preva	lence on the 28 th February?	1/20=5.0%
What is the incidence i	n February?	4/18=22.2%

	Incidence	Prevalence
Numerator	Number of new cases of disease during a specified period of time	Number of existing cases of disease at a given point of time
Denominator	Population at risk	Population at risk
Focus	Whether the event is a new case Time of onset of the disease	Presence or absence of a disease Time period is arbitrary; rather a "snapshot" in time
Uses	Expresses the risk of becoming ill	Estimates the probability of the
	The main measure of acute diseases or conditions, but also	population being ill at the period of time being studied.
	used for chronic diseases More useful for studies of causation	Useful in the study of the burden of chronic diseases and implication for health services

TOOLS OF MEASUREMENTS

.

Numerator and Denominator

- <u>Numerator</u> Number of events in a *population during specified time*.
- Denominator -
- 1. Total population
- Mid-year population - Population at risk
- 2. Total events

Tools of Measurements

- Basic tools are -
- 1. Rate
- 2. Ratio
- 3. Proportion
- · Used for expression of disease magnitude.

Rate

- A "Rate" measures the <u>occurrence of some specific event</u> in a population during given <u>time period</u>. • Example –
 - Death Rate = total no of death in 1 yr / Mid-year population **x** 1000.
- ELEMENTS Numerator (a) is a part of Denominator (b) and multiplier is 1000 or 10,000 or 100,000 or so on....

Ratio

- Ratio measures the *relationship of size of two random* quantities.
- Numerator is <u>not</u> component of denominator and BOTH numerator & denominator are unrelated.
- Ratio = x / y
- Example-
- Sex Ratio

Proportion

- Proportion is ratio which indicates the *relation* in a magnitude of a part of whole.
- · The Numerator is always part of Denominator and multiplier is 100.
- always expressed in percentage (%).

Parameter	Formula	Numerator (N) & Denominator (D)	Conclusion
Infant mortality rate (IMR)	No. of infant deaths X 1000 No. of Live births	N is a part of D; multiplier NOT 100	Rate
Maternal mortality rate (MMR) ^o	No. of maternal deaths x 100000 No. of Live births	N is NOT a part of D; both unrelated	Ratio
Sex ratio (SR)	No. of females X 1000	N is NOT a part of D; both unrelated	Ratio
Incidence ^o	No. of new cases X 1000 Total population	N is a part of D; multiplier NOT 100	Rate
Prevalence ^o	No. of new + old cases X 100 Total population	N is a part of D; multiplier 100	Proportion
Case fatality rate ^o (CFR)	No. of deaths X 100 No. of cases	N is a part of D; multiplier 100	Proportion
Relative risk (RRº)	Incidence among exposed Incidence among non-exposed	N is NOT a part of D; both unrelated	Ratio

SCOPE OF MEASUREMENTS IN EPIDEMIOLOGY

Measurements in Epidemiology

- 1. Measurement of mortality.
- 2. Measurement of morbidity.
- 3. Measurement of disability.
- 4. Measurement of natality.
- 5. Measurement of presence or absence of attributes. 6. Measurement of health care need.
- 7. Measurement of environmental & other risk factors.
- 8. Measurement of demographic variables.

EPIDEMIOLOGIC RESEARCH METHODS

.

Evidence pyramid in research

- Meta-analysis (Highest clinical relavence: Gold standard)
 Systemic review
- Cohort study
 Case control study
- Case series
- Case report
 Ideas, editorial, opinions
- Animal research
 In vitro (Test-tube) lowest clinical relevance)

Epidemiological Studies

- 1. Observational Studies
- Observational studies <u>allow nature to take its course</u>.
 The investigator measures but <u>does not intervene</u>.

2. Experimental Studies

- <u>Active involvement</u> to change <u>disease determinants.</u>
 such as an exposure or a behaviour or <u>the progress of a disease</u> through treatment.
- are similar in design to experiments in other sciences.

Observational Studies

1. Descriptive Study

- is often the <u>first step</u> in an epidemiological investigation.
 is <u>limited to a description</u> of the occurrence of a disease in a population.
 Formulation of Hypothesis.

2. Analytical Study

analyze <u>relationships</u> between health status and other variables.
Testing of Hypothesis.

Type of study	Alternative name	Unit of study
Observational studies		
Descriptive studies		
Analytical studies		
Ecological	Correlational	Populations
Cross-sectional	Prevalence	Individuals
Case-control	Case-reference	Individuals
Cohort	Follow-up	Individuals
Experimental studies	Intervention studies	
Randomized controlled trials	Clinical trials	Individuals
Cluster randomized controlled trials		Groups
Field trials		
Community trials	Community intervention studies	Healthy people Communities

٦

OBSERVATIONAL - EPIDEMIOLOGY

Descriptive Epidemiologic Studies

.

- A simple description of the health status of a community.
- · Based on routinely available data or data obtained in special
- · is often the first step in an epidemiological investigation.

Procedure in Descriptive Studies

- Defining population to be studied.
 Defining disease under study.
 Describing disease by Time
- Time Place Person

- Person
 Measurement of disease.
- Comparing with known indices.
 Formulation of etiological hypothesis.

1. Defining population to be studied.

- It is a 'Population study' not of an individual.
- Defining population by total number and <u>composition</u> (age,
- Defined population- can 'whole population' or 'a representative sample'.
- It provides 'denominator' for calculating rates and frequency.

2. Defining disease under study.

- <u>Operation Definition</u> of disease is essential for measuring the disease in defined population.
- · 'Case definition' should be adhered throughout the study.

3. Describing disease

 Descri Time 	ibing the disease frequency and <u>distribution</u> in terms of Place and Person
Time,	
TIME	Year, month, week, season, duration.
PLACE	Country, region, climatic zone, urban/rural, community, Cities, towns.
PERSON	Age, Sex, marital status, occupation, education, socioeconomic status.

4. Measurement of disease.

- To obtain the clear picture of 'disease load' in the population.
- In terms of Mortality, Morbidity and Disability.
- Morbidity has two aspects –
 Incidence Longitudinal Studies
 Prevalence Cross-sectional studies.

5. Comparing with known indices.

- · Basic epidemiological approach -
- making comparisons.
 Asking questions.
- · Making comparison with known indices in population.
- By making comparisons clues about
- disease etiology and
 high risk population.
- high risk population.

6. Formulation of etiological hypothesis. A <u>hypothesis</u> is supposition arrived at observation or reflection.

· Hypothesis should specify -

- 1. Population.
- Specific cause risk factors/exposures.
 Outcome disease/disability.
- 4. Dose-response relationship.
- 5. Time response relationship.

Hypothesis should be formulated in a manner that it can be tested with above parameters.

"Smoking 30-40 Cigarette /day for 20 years of causes lung cancer in 10% of smokers."

TESTING OF HYPOTHESIS 'Hypothesis' can be <u>accepted</u> or <u>rejected</u> by using the techniques of Analytical Epidemiology

.

Uses of Descriptive Epidemiology

- 1. Provide data of magnitude of problem- disease load.
- 2. Provide clues for etiology.
- Provide background data for planning, organizing and evaluating the preventive and curative services.

4. Contributes to research.

ANALYTICAL EPIDEMIOLOGY

Analytical Studies

- analyzing relationships between health status and other variables.
- The objective is testing the hypothesis. Subject of interest is individual, but inference applied to population.

TYPES

1. Case-control studies. (Case reference studies)

(Follow-up studies) 2. Cohort studies.

Case-control studies.
 Cohort studies.

- By analytical studies we can determine-
- Statistical association. (between disease and suspected factor)
 Strength of association.

Case-control studies

- It is first approach to testing causal hypothesis,
 especially for rare disease.
- Three features
- 1. Both exposure and outcome (disease) has occurred.
- 2. Study proceeds backwards from effect to cause.
- 3. It uses a control group to support or refuse a inference.

Introduction

- Synonyms retrospective study
- A study that compares two groups of people: those with the disease or condition under study (cases) and a very similar group of people who do not have the disease or condition (controls).
- Essential elements
 - Both exposure and disease have occurred
 Proceeds from effect to cause
 Uses a comparison 'control' group

Diseased -Cases Non-diseased -Controls Total Exposed A B A+B Non-exposed C D C+D Total A+C B+D A+B+C+D
Exposed A B A+B Non-exposed C D C+D Total A+C B+D A+B+C+D
Non-exposed C D C+D Total A+C B+D A+B+C+D
Total A+C B+D A+B+C+D

.

Basic steps in Case-control study

- 1. Research Question
- 2. Selection of cases and controls.
- 3. Matching.
- 4. Measurement of exposure.
- 5. Analysis and interpretation.

Research question

- · Begin with broad and ambitious question
- · Later, narrow and more precise
- · Considerations of time, cost
- Eg.
 - 1. Does tobacco cause cancer?
 - Does smoking tobacco cause bronchogenic CA?
 - Do persons having broncho. CA have h/o greater exposure to tobacco smoking as compared to persons w/o the disease?

1. Selection of cases and controls

CASES		

Case definition - (Diagnostic criteria and Eligibility criteria.) - Source of Cases - (Hospital or General population)

- CONTROLS
 Free from the disease under study Similar to the cases in all other aspects.
- Source
- Hospital, Relative, Neighbourhood, General population

Source of Control			
Source	Advantage	Disadvantage	
Hospital based	Easily identified. Available for interview. More willing to cooperate. Tend to give complete and accurate information (\$\u03c4recall bias).	Not typical of general population. Possess more risk factors for disease. Some diseases may share risk factors with disease under study. Berkesonian bias	
Population based	Most representative of the general population. Generally healthy.	Time, money, energy. Opportunity of exposure may not be same as that of cases. (location, occup.)	
Neighbourhood controls/ Telephone exchange random dialing	Controls and cases similar in residence. Easier than sampling the population.	Non cooperation. Not representative of general population.	
Best friend control/ Sibling control	Accessible, Cooperative. Similar to cases in most aspects.	Overmatching.	

Selection process - 2

• Cases

- In practice; we use all eligible cases within a defined time period
 - From disease registry or hospital
 - We are implicitly sampling from a subset of total population of cases
- Controls
- Sampling is most pertinent here because in rare diseases, the no. of controls greatly exceed no. of cases

Selection of cases - 1

.

• Representativeness

- presentativeness to leally, cases sh. be a random sample of all cases of interest in the source population (e.g. from vital data, registry data) But commonly they are a selection of available cases from a medical care facility. (e.g. from hospitals, clinics)
- Method of Selection
- Selection may be from incident or prevalent cases
 Incident cases are those derived from ongoing
 ascertainment of cases over time
 Prevalent cases are derived from a cross-sectional
 survey

Selection of cases - 2

- · Incident cases are more optimal
- These should be all newly diagnosed cases over a given period of time in a defined population. (However we are excluding patients who died before diagnosis)
- Prevalent cases do not include patients with a short course of disease (patients who recovered early and those who died will not be included)
- Can be partly overcome by including deceased cases as well as those alive

Selection of controls - 1

- The four principals of Wacholder
 - 1. The study base
 - 2. De-confounding
 - 3. Comparable accuracy
- 4. Efficiency

Selection of controls - 2

- · Should the controls be similar to the cases in all respects other than having the disease? i.e. comparable
- · Should the controls be representative of all non-diseased people in the population from which the cases are selected? i.e. representative

Selection of controls - 3

- Representativeness
- Sh. be representative of the general population in terms of probability of exposure to the risk factor
- Comparability Sh. also have had the same opportunity to be exposed as the cases have
- · Not that both cases and controls are equally exposed; but only that they have had the same opportunity for exposure.

Selection of controls - 5

- The study base is composed of a population at risk of exposure over a period
- · Cases emerge within a study base. Controls should also emerge from the same study base, except that they are not cases.
- Eg. If cases are selected exclusively from hospitalized patients, controls must also be selected from hospitalized patients.

Selection of controls - 6

- · Comparability is more important than representativeness in the selection of controls
- · The control should resemble the case in all respects except for the presence of disease

Selection of controls - 7

- · Number of controls Large study; equal numbers
 Small study; multiple controls
- · Use of multiple controls Controls of same type
 - Multiple controls of different types
 Hospital and neighborhood controls
 e.g. case - children with brain tumor, control-children with other cancer, normal children

2. Matching.

- <u>Matching</u> is process by we selecting controls in a manner that they are similar to cases in all variables.
- Matching is essential for comparability and for elimination of confounding bias.

- A Confounding factor is a factor which associated with both exposure and disease and unequally distributed in study and control groups.
- Exm- 1. Alcohol in esophageal cancer, smoking is confounding factor.
 2. Age for steroid contraceptive are causative in Breast cancer.
- Matching procedure –
- Group matching (Strata matching).
 Pair matching.

Biases

- Bias due to confounding
- Memory or recall bias
- Selection bias
- Berkesonian bias
- Interviewer bias

3. Measurement of exposure.

2. Matching

Comparable

- Information of exposure of risk factor should be obtain in same manner for both cases and controls.
- · Information obtain by-
- Questionnaire. Interviews. Hospital records. Employment records.

4. Analysis and interpretation

1. Exposure rates Estimation of rates of exposure of <u>suspected factor</u> among cases & controls.

2. Odds Ratio

Estimation of disease risk associated with exposure among cases & controls.

	CASES (Lung Cancer)	CONTROLS (Without Lung Cancer)	TOTAL	
SMOKERS	33 (a)	55 (b)	88 (a+b)	
NON-SMOKERS	2 (c)	27 (d)	29 (c+d)	
TOTAL	35 (a+c)	82 (b+d)	N= a+b+c+d	
b. Controls = b/ (b+d) = 55/82 = 67%. (p value is p<0.001)				
Whether the exposure is significant associated to cause lung cancer. TESTS OF SIGNIFICANCE				

2. Odds Ratio (Cross-product Ratio)

•	It is estimation of risk of disease associated with exposure.
·	It measures strength of association of risk factor and outcome(disease).

Odds Ratio = ad / bc

- Odds Ratio = 33 x 27 / 55 x 2 = 8.1
- Smokers have risk of developing lung cancer 8.1 times higher than non-smoker.

.

Other Example

	Individuals With Depression (Cases)	Individuals Without Depression (Controls)	Total
Eat Vegetables	90	90	180
Do Not Eat /egetables	130	130	260
Total	220	220	440

For the odds ratio to be a good approximation, the cases and controls must be representative of the general population with respect to exposure.

However, because the incidence of disease is unknown, the relative risk can not be calculated.

Thalidomide Tragedy A classic example of Case-control study

.

- A classic example of a case-control study was the discovery of the relationship between thalidomide and limb defects in babies born in the Federal Republic of Germany in 1959 and 1960.
- The study, done in 1961, compared affected children with normal children.
- Of 46 mothers whose babies had malformations, 41 had been given thalidomide between the fourth and ninth weeks of pregnancy, whereas none of the 300 control mothers, whose children were normal, had taken the drug during pregnancy.
- Accurate timing of the drug intake was crucial for determining relevant exposure.

Other Examples

- Adenocarcinoma of vagina and DES
- OCP and thrombosis

Pros & Cons		
Advantages	Disadvantages	
Easy to carry out	Subject to several biases	
Rapid results	Selection of controls difficult	
Inexpensive	Incidence can' t be measured	
Suitable for rare diseases	Association doesn't mean causation	
No risk to subjects	Not practical for rare exposure	
Minimal attrition		
Multiple exposures can be studied		

Г

7

Case Control Studies	Cohort Studies
Proceeds from effect to cause	Proceeds from cause to effect
Starts with the disease	Starts with people exposed to the risk factor or suspected cause
Tests whether the suspected cause occurs more frequently in those with disease than those without disease	Tests whether disease occurs more frequently in those exposed than in those not exposed
Usually the 1 st approach to the testing of hypothesis, but also useful for exploratory studies	Reserved for the testing of precisely formulated hypothesis
Involves fewer study subjects	Involves larger number of subjects
Yields results relatively quickly	Long follow-up, delayed results
Suitable for study of rare diseases	Inappropriate when disease or exposure under investigation is rare
Generally, yields only estimate of relative risk (Odds ratio)	Yields incidence rates, relative risk, attributable risk
Cannot yield information about disease other than that under study	Can give information about more than one disease outcome
Relatively inexpensive	Expensive 114

Cohort Studies

- Cohort is group of people with common characteristics or experience within a define time period. Birth cohort Exposure cohort Marriage cohort
- also called follow-up or incidence studies.
- · Begin with a group of people who are free of disease. Study cohort
 Control cohort
- · Whole cohort is followed up to see the effect of exposure.

Types of Cohort Studies

- 1. Prospective cohort studies. (Current cohort study) Dolls & Hills-Smoking with lung carcine Framingham heart study
 OCP & health by Royal College of General Practitioner
- 2. Retrospective cohort studies. (Historical cohort study) Birth cohort 1969 to 1975 with Electronic foetal monitoring Lung carcinoma in Uranium miners Angiosarcoma of liver with PVC
- Combination of retrospective and prospective cohort studies.
 Radiation therapy for Anchylosing Spondylitis with Aplastic anaemia or Leukemias

Elements of Cohort studies

.

- 1. Selection of study subjects.
- 2. Obtaining data on exposure. 3. Selection of comparison group.
- 4. Follow-up.
- 5. Analysis.

1. Selection of study subjects.

- · General population
- Framingham heart study · Special group (Doctors, Teachers, Lawyers, former military). – Dolls & Hills
- Exposure group-Cohort should be selected from the group with special exposure under study.

Radiologist for X-ray exposure
 Uranium miners

2. Obtaining data on exposure.

- Cohort members- questionnaire, interview. Review of records. b.
- Medical Examination or tests.
- d. Environmental surveys.
- Categorized according to exposure -Whether exposed or not exposed to special causal factor. 1. 2. Degree of exposure.

3. Selection of comparison group.

- I. Internal comparison.
 Subjects are categorized in group according to degree of exposure & mortality and morbidity compared.
 Framingham Heart Study

- External comparison.
 When degree of exposure not known.
 Control group with similar in other variable.
 Radiologists with Ophthalmologists
- 3. Comparison with general population.
- Comparison with the general population as exposed group. Asbestos worker with General population of same geographic area Expected values & Observed values ÷

4. Follow-up.

- · Regular follow-up of all participants.
- · Measurement of variable depends upon outcome.
- Procedure-
- 1. Periodical medical examination
- 2. Review of hospital records. 3.
- Routine surveillance and death records. Mailed questionnaire and phone calls, periodic home visits on annual basis. 4.

5. Analysis.

- · Data are analyzed in terms of -
- a. Incidence rates. Among exposed and non-exposed
- b. Estimation of risk. Relative Risk.
- . Attributable Risk.

Measures of association

- Relative risk (RR) = I (e) / I (ue)
- Risk difference = I (e) I (ue)
- Attributable risk = $[I_{(e)} I_{(ue)}]/I_{(e)}$
- Population attributable risk = [I $_{(tp)}$ I $_{(ue)}$]/ I $_{(tp)}$ X100

• Incidence among non-smoker = 3/3000= 1per 1000.

Test of significance = p< 0.001

Relative Risk (Risk ratio)

.

Relative risk is the ratio of the incidence of disease among exposed and incidence among non-exposed.

RR of Lung cancer = 10/1 = 10

- It is direct measure of strength of the association between suspected cause and effect.
- It does not necessary implies the <u>causal relationship</u>.

Attributable Risk (Risk difference)

- AR is the difference in incidence rates of disease among exposed and nonexposed group.
- AR= I.R. among exposed I.R. among non-exposed
 /Incidence among exposed x 100
 - Example A.R.= 10-1/ 10 x 100 = 90 %
- AR is the proportion of disease due to particular risk factor exposure.
 Exm 90% of lung cancers are due to smoking.
- That means- amount of disease eliminated if the suspected risk factor is removed.

Population Attributable Risk

- Population A. R. = I.R. in total population I.R. among non-exposed
 /I.R. in total population X 100
- Population Attributable Risk is useful concept as it give the magnitude of disease that can be <u>reduced</u> from the population if the <u>suspected risk factor</u> is eliminated or modified.

Frac	tion, pr	oportion	& percen	tage
	Fraction	Proportion	Percentage	
	1/3	0.33	33%	
	2/3	0.66	66%	
	3/4	0.75	75%	
	1/4	0.25	25%	
	2/4	0.50	50%	
	2/5	0.40	40%	
		II MBES, Epidemiology seri	65	

Example of calculations			
	Lung cancer	Normal	Total
Smoker	70	6930	
Non-smoker	3	2997	
Total			
Incidence of disease in regoond =0.001 or 1% Incidence of disease in reno-exposed =0.001 or 0.1% atabate risk atabate risk Authorization or 0.1% atabate risk ago or 5%			
	I MBES, Epidem	iologyseries	134

Exam	ple of calcu	ulations
I.R. in total populat	tion - I.R. among non-ex	posed /I.R. in total populati
100	Deaths per 100,000 perso	on years
Heavy Smokers	224	Exposed to suspected factor(a)
Non-smokers	10	Non exposed to
		(b)
Death in total population	74	(b) (c)
Death in total population Individual RR	74 a/b=224/10	(b) (c) 22.40

• The relative and attributable risks of Cardiovascular complications in women taking oral contraceptives:

Cardiovascular risk 100,000 patients years		
	30-39	40-44
Relative risk	2.8	2.8
Attributable risk	3.5	20.0

• Risk assessment, smokers v/s non-smokers ion-smokers RR 0.90 0.07 12.86 92.2 Lung Cancer CHD 4.87 4.22 1.15 13.3

Advantages

.

- Incidence and RR can be calculated
- One exposure and multiple outcomes
- Dose response ratios
- Recall bias reduced

Disadvantages

- Unsuitable for rare outcomes Long duration
- Administrative problems
- Loss to follow upSelection of representative groups
- Diagnostic criteria may change over time
- Expensive
- People may alter their behaviour
 Ethical problems

Examples of famous cohort studies

- British doctors study on smoking and lung cancer
- The Framingham heart study
- Oral contraceptives study

Case Control Studies	Cohort Studies
Proceeds from effect to cause	Proceeds from cause to effect
Starts with the disease	Starts with people exposed to the risk factor or suspected cause
Tests whether the suspected cause occurs more frequently in those with disease than those without disease	Tests whether disease occurs more frequently in those exposed than in those no exposed
Usually the 1 st approach to the testing of hypothesis, but also useful for exploratory studies	Reserved for the testing of precisely formulated hypothesis
Involves fewer study subjects	Involves larger number of subjects
Yields results relatively quickly	Long follow-up, delayed results
Suitable for study of rare diseases	Inappropriate when disease or exposure under investigation is rare
Generally, yields only estimate of relative risk (Odds ratio)	Yields incidence rates, relative risk, attributable risk
Cannot yield information about disease other than that under study	Can give information about more than one disease outcome
Relatively inexpensive	Expensive 141

EXPERIMENTAL EPIDEMIOLOGY

- Interventional or experimental study involves attempting to change a variable in subjects under study. This could mean the elimination of a dietary factor thought to cause allergy, or testing a new treatment on a selected group of patients.
- The effects of an intervention are measured by comparing the outcome in the experimental group with that in a control group.

Objectives of Experimental Studies

- To provide <u>'scientific proof'</u> for etiology of disease and risk factor which may allow <u>modification of occurrence</u> of disease.
- 2. To provide a <u>method of measurement</u> for effectiveness and efficiency of therapeutic / preventive measure for disease.
- To provide method to measurement for the efficiency <u>health</u> services for prevention, control and treatment of disease.

Types of Experimental Studies

- 1. Randomized Control Trials.
- 2. Field Trials & Community Trials.

Randomized Control Trials (RCT)

- RCT is a <u>planned experiment</u> designed to asses the efficacy of an intervention in human beings by comparing the effect of intervention in a <u>study group</u> to <u>a control group</u>.
- The allocation of subjects to study or control is determined purely by chance (randomization).
- For new programme or new therapy RCT is best method of evaluation.

Basic Steps in RCT

.

- 1. Drawing-up a protocol.
- 2. Selecting reference and experimental population. 3. Randomization.
- 4. Manipulation or Intervention.
- 5. Follow-up.
- 6. Assessment of outcome.

The Protocol

- Study conducted under strict protocol. · Protocol specifies -
- aim, objectives, criteria for selection of study and control group, sample size, intervention applied, standardization and schedule and responsibilities.
- Pilot study -
- some time small preliminary study is conducted to find out feasibility or operational efficiency.

Reference and Experimental population

- Reference population
 (Target Population)

 Is the population in which the results of the study is applicable.
 A reference population may be Human being, country, specific age, sex, occupation etc.
- Experimental Population (Study Population)
 It is derived from the target population

- Experimental Population
 It is derived from the target populatio
 Three criteria 1. they must be representative of RP.
 2. qualified for the study.
 3. ready to give informed consents.

Randomization

- It is statistical procedure to allocate participants in groups Study group and Control group.
- Randomization gives equal chance to participants to be allocated in Study or Control group.
- · Randomization is an attempt to eliminate 'bias' and allow 'comparability'
- Randomization eliminates 'Selection Bias'.
- Matching is for only those variable which are known.
- · Randomization is best done by the table of random numbers.
- In Analytical study there is no randomization, we already study the difference of risk factor. So only option is Matching.

Manipulation or Intervention

- Manipulation by <u>application of therapy</u> or <u>reduction or</u> <u>withdrawal</u> of suspected causal factor in Study and control group.
- · This manipulation creates *independent variable* whose effect is measured in *final outcome*.

Follow-up

- Follow-up of both study and control group in standard manner in definite time period.
- · Duration of trial depends on the changes expected in duration since study started.
- · Some loss of subjects due to migration, death is k/as Attrition.

Assessment

- Final step is assessment of outcome in terms of positive and negative results.
- The incidence of positive and negative results are compared in both group- <u>Study group and Control group</u>.
- Results are tested for statistical significance. (p value)

Potential errors in epidemiological studies (Bias)

.

- <u>Bias</u> may arise from the <u>errors of assessment</u> of outcome due to human element. <u>Three sources</u> –
- 1. Bias on part of subject.
- 2. Observer bias.
- 3. Bias in evaluation.

Blinding

· Blinding is procedure to eliminate bias.

- <u>Thee types</u> 1. Single blind trial.
 Participant not aware of study.
- 2. Double blind trial.
- Examiner and participant both not aware.
 Triple blind trial.
 Participant, examiner and person analyzing the data not aware of the study.

Field trials

- Field trials, in contrast to clinical trials, involve people who are healthy but presumed to be at risk.
- Data collection takes place "in the field," usually among non-institutionalized people in the general population.
- Since the subjects are disease-free and the purpose is to prevent diseases. .

Community Trials

- In this form of experiment, the treatment groups are communities rather than individuals.
- This is particularly appropriate for diseases that are influenced by social conditions, and for which prevention efforts target group behaviour.
- Example –
 IDD and Iron def Anaemia.
 Fortification of food.

Ethical issues in Epidemiological Studies

- 1. Informed consent.
- 2. Confidentiality.
- 3. Respect for human rights.
- 4. Scientific integrity.

ASSOCIATION AND CAUSATION

- Descriptive studies-
- Identification of disease problem in community
 Relating agent, host and environmental factor.
 Etiological hypothesis. inity.

- Analytical and Experimental studies
 Tests the hypothesis derived from the descriptive studies.
 Accept or reject the association between the suspected cause and disease.
- Epidemiologists are now proceed from demonstration of statistical association to causal association.

Association is defined as - <u>the concurrence of two variables</u> more often than would be expected by chance.

- So association does necessarily imply a *causal relationship*.
- Correlation is strength of association between two variable.
 Correlation coefficients ranges from -1 to +1.
 +1 = perfect linear positive relationship.
 -1 = perfect linear negative relationship.

- Causation implies association and correlation but correlation and association do not necessarily imply causation.

TYPE OF ASSOCIATION

1. Spurious association. Exp- IMR in home and institutional deliveries.

2. Indirect association. Exp- Endemic goitre and altitude

- 3. Direct or Causal association,
 a. One to one causal association.
 Exm- streptococcus-tonsilitis.
 b. Multi-factorial causation.
 Exm- CHD- multiple factors.

THANK YOU

•